Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiome ; 19(1): 9, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291480

RESUMO

BACKGROUND: Viruses play important roles in modulating microbial communities and influencing global biogeochemistry. There is now growing interest in characterising their ecological roles across diverse biomes. However, little is known about viral ecology in low-nutrient, chemotrophic-based environments. In such ecosystems, virus-driven manipulation of nutrient cycles might have profound impacts across trophic levels. In particular, anchialine environments, which are low-energy underground estuaries sustained by chemotrophic processes, represent ideal model systems to study novel virus-host-environment interactions. RESULTS: Here, we employ metagenomic sequencing to investigate the viral community in Bundera Sinkhole, an anchialine ecosystem rich in endemic species supported by microbial chemosynthesis. We find that the viruses are highly novel, with less than 2% representing described viruses, and are hugely abundant, making up as much as 12% of microbial intracellular DNA. These highly abundant viruses largely infect important prokaryotic taxa that drive key metabolic processes in the sinkhole. Further, the abundance of viral auxiliary metabolic genes (AMGs) involved in nucleotide and protein synthesis was strongly correlated with declines in environmental phosphate and sulphate concentrations. These AMGs encoded key enzymes needed to produce sulphur-containing amino acids, and phosphorus metabolic enzymes involved in purine and pyrimidine nucleotide synthesis. We hypothesise that this correlation is either due to selection of these AMGs under low phosphate and sulphate concentrations, highlighting the dynamic interactions between viruses, their hosts, and the environment; or, that these AMGs are driving increased viral nucleotide and protein synthesis via manipulation of host phosphorus and sulphur metabolism, consequently driving nutrient depletion in the surrounding water. CONCLUSION: This study represents the first metagenomic investigation of viruses in anchialine ecosystems, and provides new hypotheses and insights into virus-host-environment interactions in such 'dark', low-energy environments. This is particularly important since anchialine ecosystems are characterised by diverse endemic species, both in their microbial and faunal assemblages, which are primarily supported by microbial chemosynthesis. Thus, virus-host-environment interactions could have profound effects cascading through all trophic levels.

2.
Microbiome ; 11(1): 190, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37626351

RESUMO

BACKGROUND: Anchialine environments, in which oceanic water mixes with freshwater in coastal aquifers, are characterised by stratified water columns with complex physicochemical profiles. These environments, also known as subterranean estuaries, support an abundance of endemic macro and microorganisms. There is now growing interest in characterising the metabolisms of anchialine microbial communities, which is essential for understanding how complex ecosystems are supported in extreme environments, and assessing their vulnerability to environmental change. However, the diversity of metabolic strategies that are utilised in anchialine ecosystems remains poorly understood. RESULTS: Here, we employ shotgun metagenomics to elucidate the key microorganisms and their dominant metabolisms along a physicochemical profile in Bundera Sinkhole, the only known continental subterranean estuary in the Southern Hemisphere. Genome-resolved metagenomics suggests that the communities are largely represented by novel taxonomic lineages, with 75% of metagenome-assembled genomes assigned to entirely new or uncharacterised families. These diverse and novel taxa displayed depth-dependent metabolisms, reflecting distinct phases along dissolved oxygen and salinity gradients. In particular, the communities appear to drive nutrient feedback loops involving nitrification, nitrate ammonification, and sulphate cycling. Genomic analysis of the most highly abundant members in this system suggests that an important source of chemotrophic energy is generated via the metabolic coupling of nitrogen and sulphur cycling. CONCLUSION: These findings substantially contribute to our understanding of the novel and specialised microbial communities in anchialine ecosystems, and highlight key chemosynthetic pathways that appear to be important in these energy-limited environments. Such knowledge is essential for the conservation of anchialine ecosystems, and sheds light on adaptive processes in extreme environments. Video Abstract.


Assuntos
Microbiota , Ciclo do Nitrogênio , Humanos , Microbiota/genética , Enxofre , Nitrificação , Austrália
3.
Appl Environ Microbiol ; 89(3): e0159022, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36988354

RESUMO

Antimicrobial resistance in bacteria is a threat to both human and animal health. We aimed to understand the impact of domestication and antimicrobial treatment on the types and numbers of resistant bacteria, antibiotic resistance genes (ARGs), and class 1 integrons (C1I) in the equine gut microbiome. Antibiotic-resistant fecal bacteria were isolated from wild horses, healthy farm horses, and horses undergoing veterinary treatment, and isolates (9,083 colonies) were screened by PCR for C1I; these were found at frequencies of 9.8% (vet horses), 0.31% (farm horses), and 0.05% (wild horses). A collection of 71 unique C1I+ isolates (17 Actinobacteria and 54 Proteobacteria) was subjected to resistance profiling and genome sequencing. Farm horses yielded mostly C1I+ Actinobacteria (Rhodococcus, Micrococcus, Microbacterium, Arthrobacter, Glutamicibacter, Kocuria), while vet horses primarily yielded C1I+ Proteobacteria (Escherichia, Klebsiella, Enterobacter, Pantoea, Acinetobacter, Leclercia, Ochrobactrum); the vet isolates had more extensive resistance and stronger PC promoters in the C1Is. All integrons in Actinobacteria were flanked by copies of IS6100, except in Micrococcus, where a novel IS5 family element (ISMcte1) was implicated in mobilization. In the Proteobacteria, C1Is were predominantly associated with IS26 and also IS1, Tn21, Tn1721, Tn512, and a putative formaldehyde-resistance transposon (Tn7489). Several large C1I-containing plasmid contigs were retrieved; two of these (plasmid types Y and F) also had extensive sets of metal resistance genes, including a novel copper-resistance transposon (Tn7519). Both veterinary treatment and domestication increase the frequency of C1Is in equine gut microflora, and each of these anthropogenic factors selects for a distinct group of integron-containing bacteria. IMPORTANCE There is increasing acknowledgment that a "one health" approach is required to tackle the growing problem of antimicrobial resistance. This requires that the issue is examined from not only the perspective of human medicine but also includes consideration of the roles of antimicrobials in veterinary medicine and agriculture and recognizes the importance of other ecological compartments in the dissemination of ARGs and mobile genetic elements such as C1I. We have shown that domestication and veterinary treatment increase the frequency of occurrence of C1Is in the equine gut microflora and that, in healthy farm horses, the C1I are unexpectedly found in Actinobacteria, while in horses receiving antimicrobial veterinary treatments, a taxonomic shift occurs, and the more typical integron-containing Proteobacteria are found. We identified several new mobile genetic elements (plasmids, insertion sequences [IS], and transposons) on genomic contigs from the integron-containing equine bacteria.


Assuntos
Elementos de DNA Transponíveis , Domesticação , Cavalos , Animais , Humanos , Plasmídeos , Integrons/genética , Bactérias/genética , Antibacterianos/farmacologia
4.
Microb Genom ; 9(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748555

RESUMO

Membrane transporters are a large group of proteins that span cell membranes and contribute to critical cell processes, including delivery of essential nutrients, ejection of waste products, and assisting the cell in sensing environmental conditions. Obtaining an accurate and specific annotation of the transporter proteins encoded by a micro-organism can provide details of its likely nutritional preferences and environmental niche(s), and identify novel transporters that could be utilized in small molecule production in industrial biotechnology. The Transporter Automated Annotation Pipeline (TransAAP) (http://www.membranetransport.org/transportDB2/TransAAP_login.html) is a fully automated web service for the prediction and annotation of membrane transport proteins in an organism from its genome sequence, by using comparisons with both curated databases such as the TCDB (Transporter Classification Database) and TDB, as well as selected Pfams and TIGRFAMs of transporter families and other methodologies. TransAAP was used to annotate transporter genes in the prokaryotic genomes in the National Center for Biotechnology Information (NCBI) RefSeq; these are presented in the transporter database TransportDB (http://www.membranetransport.org) website, which has a suite of data visualization and analysis tools. Creation and maintenance of a bioinformatic database specific for transporters in all genomic datasets is essential for microbiology research groups and the general research/biotechnology community to obtain a detailed picture of membrane transporter systems in various environments, as well as comprehensive information on specific membrane transport proteins.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Proteínas de Membrana Transportadoras/genética , Clostridioides difficile/genética , Genômica/métodos , Genoma Bacteriano
5.
Drug Resist Updat ; 66: 100911, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592567

RESUMO

AIMS: This study examined the origins and evolution of the AdeABC, AdeFGH and AdeIJK efflux pumps in the Acinetobacter genus, including human and animal pathogens and species from non-clinical environments. METHODS: Comparative genome analyses were performed using the reference sequences for 70 Acinetobacter species to identify putative orthologs of AdeABC, AdeFGH and AdeIJK and their regulators. Sequence similarities and the genomic locations of coding sequences were correlated with phylogeny to infer modes of evolution. Intraspecies variation was assessed in species of interest using up to 236 complete genome sequences. Mutants overproducing adeIJK in A. baylyi were examined to identify regulators of this system in a non A. baumannii species. RESULTS: The results indicate that adeIJK has been a stable part of Acinetobacter genomes since the genesis of this genus, whereas adeABC and adeFGH were carried by less than half of the species, but showed some lineage specificity. The organisation and local genetic contexts of adeABC loci were particularly variable to the sub-species level, suggesting frequent recombination. Cognate regulatory systems were almost always found in the genomes of species encoding pumps. Mutations in adeN, which encodes a repressor of adeIJK, were selected by antibiotic exposure in A. baylyi, similar to previous findings in pathogenic lineages. CONCLUSIONS: The multidrug efflux capacity of clinical Acinetobacter strains stems from accessory and core genetic features. AdeIJK is likely to have ancient core function(s) that have promoted its maintenance, whereas recent antibiotic use may be driving the evolution of the AdeABC pump.


Assuntos
Acinetobacter baumannii , Proteínas de Membrana Transportadoras , Animais , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Acinetobacter baumannii/genética , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
6.
Microb Cell Fact ; 21(1): 190, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104783

RESUMO

BACKGROUND: Eukaryotic algae have recently emerged as hosts for metabolic engineering efforts to generate heterologous isoprenoids. Isoprenoid metabolic architectures, flux, subcellular localization, and transport dynamics have not yet been fully elucidated in algal hosts. RESULTS: In this study, we investigated the accessibility of different isoprenoid precursor pools for C15 sesquiterpenoid generation in the cytoplasm and chloroplast of Chlamydomonas reinhardtii using the Abies grandis bisabolene synthase (AgBS) as a reporter. The abundance of the C15 sesquiterpene precursor farnesyl pyrophosphate (FPP) was not increased in the cytosol by co-expression and fusion of AgBS with different FPP synthases (FPPSs), indicating limited C5 precursor availability in the cytoplasm. However, FPP was shown to be available in the plastid stroma, where bisabolene titers could be improved several-fold by FPPSs. Sesquiterpene production was greatest when AgBS-FPPS fusions were directed to the plastid and could further be improved by increasing the gene dosage. During scale-up cultivation with different carbon sources and light regimes, specific sesquiterpene productivities from the plastid were highest with CO2 as the only carbon source and light:dark illumination cycles. Potential prenyl unit transporters are proposed based on bioinformatic analyses, which may be in part responsible for our observations. CONCLUSIONS: Our findings indicate that the algal chloroplast can be harnessed in addition to the cytosol to exploit the full potential of algae as green cell factories for non-native sesquiterpenoid generation. Identification of a prenyl transporter may be leveraged for further extending this capacity.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Sesquiterpenos , Carbono/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Microalgas/metabolismo , Neopreno , Plantas , Fosfatos de Poli-Isoprenil , Sesquiterpenos/metabolismo , Terpenos/metabolismo
7.
BMC Genomics ; 23(1): 22, 2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-34998388

RESUMO

Starmerella bombicola is a non-conventional yeast mainly known for its capacity to produce high amounts of the glycolipids 'sophorolipids'. Although its product has been used as biological detergent for a couple of decades, the genetics of S. bombicola are still largely unknown. Computational analysis of the yeast's genome enabled us to identify 254 putative transporter genes that make up the entire transportome. For each of them, a potential substrate was predicted using homology analysis, subcellular localization prediction and RNA sequencing in different stages of growth. One transporter family is of exceptional importance to this yeast: the ATP Binding Cassette (ABC) transporter Superfamily, because it harbors the main driver behind the highly efficient sophorolipid export. Furthermore, members of this superfamily translocate a variety of compounds ranging from antibiotics to hydrophobic molecules. We conducted an analysis of this family by creating deletion mutants to understand their role in the export of hydrophobic compounds, antibiotics and sophorolipids. Doing this, we could experimentally confirm the transporters participating in the efflux of medium chain fatty alcohols, particularly decanol and undecanol, and identify a second sophorolipid transporter that is located outside the sophorolipid biosynthetic gene cluster.


Assuntos
Saccharomycetales , Glicolipídeos , Família Multigênica , Saccharomycetales/genética , Leveduras
8.
Front Microbiol ; 12: 651282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936009

RESUMO

Plants live in association with microorganisms that positively influence plant development, vigor, and fitness in response to pathogens and abiotic stressors. The bulk of the plant microbiome is concentrated belowground at the plant root-soil interface. Plant roots secrete carbon-rich rhizodeposits containing primary and secondary low molecular weight metabolites, lysates, and mucilages. These exudates provide nutrients for soil microorganisms and modulate their affinity to host plants, but molecular details of this process are largely unresolved. We addressed this gap by focusing on the molecular dialog between eight well-characterized beneficial strains of the Pseudomonas fluorescens group and Brachypodium distachyon, a model for economically important food, feed, forage, and biomass crops of the grass family. We collected and analyzed root exudates of B. distachyon and demonstrated the presence of multiple carbohydrates, amino acids, organic acids, and phenolic compounds. The subsequent screening of bacteria by Biolog Phenotype MicroArrays revealed that many of these metabolites provide carbon and energy for the Pseudomonas strains. RNA-seq profiling of bacterial cultures amended with root exudates revealed changes in the expression of genes encoding numerous catabolic and anabolic enzymes, transporters, transcriptional regulators, stress response, and conserved hypothetical proteins. Almost half of the differentially expressed genes mapped to the variable part of the strains' pangenome, reflecting the importance of the variable gene content in the adaptation of P. fluorescens to the rhizosphere lifestyle. Our results collectively reveal the diversity of cellular pathways and physiological responses underlying the establishment of mutualistic interactions between these beneficial rhizobacteria and their plant hosts.

9.
Chem Rev ; 121(9): 5417-5478, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33761243

RESUMO

Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.


Assuntos
Antibacterianos/metabolismo , Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Resistência Microbiana a Medicamentos , Humanos , Proteínas de Membrana Transportadoras/química
10.
J Bacteriol ; 203(7)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33257523

RESUMO

Gene essentiality studies have been performed on numerous bacterial pathogens, but essential gene sets have been determined for only a few plant-associated bacteria. Pseudomonas protegens Pf-5 is a plant-commensal, biocontrol bacterium that can control disease-causing pathogens on a wide range of crops. Work on Pf-5 has mostly focused on secondary metabolism and biocontrol genes, but genome-wide approaches such as high-throughput transposon mutagenesis have not yet been used for this species. In this study, we generated a dense P. protegens Pf-5 transposon mutant library and used transposon-directed insertion site sequencing (TraDIS) to identify 446 genes essential for growth on rich media. Genes required for fundamental cellular machinery were enriched in the essential gene set, while genes related to nutrient biosynthesis, stress responses, and transport were underrepresented. The majority of Pf-5 essential genes were part of the P. protegens core genome. Comparison of the essential gene set of Pf-5 with those of two plant-associated pseudomonads, P. simiae and P. syringae, and the well-studied opportunistic human pathogen P. aeruginosa PA14 showed that the four species share a large number of essential genes, but each species also had uniquely essential genes. Comparison of the Pf-5 in silico-predicted and in vitro-determined essential gene sets highlighted the essential cellular functions that are over- and underestimated by each method. Expanding essentiality studies into bacteria with a range of lifestyles may improve our understanding of the biological processes important for bacterial survival and growth.IMPORTANCE Essential genes are those crucial for survival or normal growth rates in an organism. Essential gene sets have been identified in numerous bacterial pathogens but only a few plant-associated bacteria. Employing genome-wide approaches, such as transposon insertion sequencing, allows for the concurrent analyses of all genes of a bacterial species and rapid determination of essential gene sets. We have used transposon insertion sequencing to systematically analyze thousands of Pseudomonas protegens Pf-5 genes and gain insights into gene functions and interactions that are not readily available using traditional methods. Comparing Pf-5 essential genes with those of three other pseudomonads highlights how gene essentiality varies between closely related species.


Assuntos
Proteínas de Bactérias/genética , Genes Essenciais , Pseudomonas/genética , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , Biblioteca Gênica , Genoma Bacteriano , Mutagênese Insercional , Plantas/microbiologia , Pseudomonas/metabolismo
11.
Commun Biol ; 2: 184, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31098417

RESUMO

Plastic pollution is a global threat to marine ecosystems. Plastic litter can leach a variety of substances into marine environments; however, virtually nothing is known regarding how this affects photosynthetic bacteria at the base of the marine food web. To address this, we investigated the effect of plastic leachate exposure on marine Prochlorococcus, widely considered the most abundant photosynthetic organism on Earth and vital contributors to global primary production and carbon cycling. Two strains of Prochlorococcus representing distinct ecotypes were exposed to leachate from common plastic items: high-density polyethylene bags and polyvinyl chloride matting. We show leachate exposure strongly impairs Prochlorococcus in vitro growth and photosynthetic capacity and results in genome-wide transcriptional changes. The strains showed distinct differences in the extent and timing of their response to each leachate. Consequently, plastic leachate exposure could influence marine Prochlorococcus community composition and potentially the broader composition and productivity of ocean phytoplankton communities.


Assuntos
Plásticos/toxicidade , Prochlorococcus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Ecossistema , Genoma Bacteriano/efeitos dos fármacos , Modelos Biológicos , Oceanos e Mares , Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Plásticos/química , Polietileno/toxicidade , Cloreto de Polivinila/toxicidade , Prochlorococcus/crescimento & desenvolvimento , Prochlorococcus/metabolismo , RNA-Seq , Água do Mar/microbiologia , Poluentes Químicos da Água/química
12.
Sci Rep ; 9(1): 5035, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30903006

RESUMO

Scedosporium fungi are found in various natural and host-associated environments, including the lungs of cystic fibrosis patients. However, their role in infection development remains underexplored. Here the attachment of conidia of a virulent S. aurantiacum strain WM 06.482 onto the human lung epithelial A549 cells in vitro was visualized using microscopy to examine the initial steps of infection. We showed that 75-80% of fungal conidia were bound to the A549 cells within four hours of co-incubation, and started to produce germ tubes. The germinating conidia seemed to invade the cells through the intercellular space, no intracellular uptake of fungal conidia by the airway epithelial cells after conidial attachment. Transcriptomic analysis of the A549 cells revealed that the up-regulated genes were mainly associated with cell repair and inflammatory processes indicating a protective response against S. aurantiacum infection. Network analysis of the differentially expressed genes showed activation of the innate immune system (NF-kB pathway) leading to the release of pro-inflammatory cytokines. We believe this is the first report showing the transcriptomic response of human alveolar epithelial cells exposed to S. aurantiacum conidia paving a way for better understanding of the mechanism of the infection process.


Assuntos
Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Pulmão/metabolismo , Scedosporium/crescimento & desenvolvimento , Células A549 , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Ontologia Genética , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Pulmão/microbiologia , Pulmão/patologia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Scedosporium/patogenicidade , Scedosporium/ultraestrutura , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade , Esporos Fúngicos/ultraestrutura , Virulência
13.
Artigo em Inglês | MEDLINE | ID: mdl-30524971

RESUMO

Pseudomonas aeruginosa is a significant cause of mortality in patients with cystic fibrosis (CF). To explore the interaction of the CF isolate P. aeruginosa PASS1 with the innate immune response, we have used Danio rerio (zebrafish) as an infection model. Confocal laser scanning microscopy (CLSM) enabled visualization of direct interactions between zebrafish macrophages and P. aeruginosa PASS1. Dual RNA-sequencing of host-pathogen was undertaken to profile RNA expression simultaneously in the pathogen and the host during P. aeruginosa infection. Following establishment of infection in zebrafish embryos with PASS1, 3 days post infection (dpi), there were 6739 genes found to be significantly differentially expressed in zebrafish and 176 genes in PASS1. A range of virulence genes were upregulated in PASS1, including genes encoding pyoverdine biosynthesis, flagellin, non-hemolytic phospholipase C, proteases, superoxide dismutase and fimbrial subunits. Additionally, iron and phosphate acquisition genes were upregulated in PASS1 cells in the zebrafish. Transcriptional changes in the host immune response genes highlighted phagocytosis as a key response mechanism to PASS1 infection. Transcriptional regulators of neutrophil and macrophage phagocytosis were upregulated alongside transcriptional regulators governing response to tissue injury, infection, and inflammation. The zebrafish host showed significant downregulation of the ribosomal RNAs and other genes involved in translation, suggesting that protein translation in the host is affected by PASS1 infection.


Assuntos
Fibrose Cística/microbiologia , Interações Hospedeiro-Patógeno/genética , Infecções por Pseudomonas/genética , Pseudomonas aeruginosa/genética , Transcriptoma , Peixe-Zebra/genética , Adulto , Animais , Modelos Animais de Doenças , Feminino , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Macrófagos/metabolismo , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Análise de Sequência de RNA , Virulência/genética , Peixe-Zebra/embriologia , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia
14.
Environ Microbiol ; 20(6): 2142-2159, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29633519

RESUMO

Pseudomonas is a large and diverse genus of Gammaproteobacteria. To provide a framework for discovery of evolutionary and taxonomic relationships of these bacteria, we compared the genomes of type strains of 163 species and 3 additional subspecies of Pseudomonas, including 118 genomes sequenced herein. A maximum likelihood phylogeny of the 166 type strains based on protein sequences of 100 single-copy orthologous genes revealed thirteen groups of Pseudomonas, composed of two to sixty three species each. Pairwise average nucleotide identities and alignment fractions were calculated for the data set of the 166 type strains and 1224 genomes of Pseudomonas available in public databases. Results revealed that 394 of the 1224 genomes were distinct from any type strain, suggesting that the type strains represent only a fraction of the genomic diversity of the genus. The core genome of Pseudomonas was determined to contain 794 genes conferring primarily housekeeping functions. The results of this study provide a phylogenetic framework for future studies aiming to resolve the classification and phylogenetic relationships, identify new gene functions and phenotypes, and explore the ecological and metabolic potential of the Pseudomonas spp.


Assuntos
Genoma Bacteriano , Genômica , Filogenia , Pseudomonas/classificação , Pseudomonas/genética , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica
15.
Front Plant Sci ; 9: 345, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619036

RESUMO

The Inland Pacific Northwest (IPNW) encompasses 1. 6 million cropland hectares and is a major wheat-producing area in the western United States. The climate throughout the region is semi-arid, making the availability of water a significant challenge for IPNW agriculture. Much attention has been given to uncovering the effects of water stress on the physiology of wheat and the dynamics of its soilborne diseases. In contrast, the impact of soil moisture on the establishment and activity of microbial communities in the rhizosphere of dryland wheat remains poorly understood. We addressed this gap by conducting a three-year field study involving wheat grown in adjacent irrigated and dryland (rainfed) plots established in Lind, Washington State. We used deep amplicon sequencing of the V4 region of the 16S rRNA to characterize the responses of the wheat rhizosphere microbiome to overhead irrigation. We also characterized the population dynamics and activity of indigenous Phz+ rhizobacteria that produce the antibiotic phenazine-1-carboxylic acid (PCA) and contribute to the natural suppression of soilborne pathogens of wheat. Results of the study revealed that irrigation affected the Phz+ rhizobacteria adversely, which was evident from the significantly reduced plant colonization frequency, population size and levels of PCA in the field. The observed differences between irrigated and dryland plots were reproducible and amplified over the course of the study, thus identifying soil moisture as a critical abiotic factor that influences the dynamics, and activity of indigenous Phz+ communities. The three seasons of irrigation had a slight effect on the overall diversity within the rhizosphere microbiome but led to significant differences in the relative abundances of specific OTUs. In particular, irrigation differentially affected multiple groups of Bacteroidetes and Proteobacteria, including taxa with known plant growth-promoting activity. Analysis of environmental variables revealed that the separation between irrigated and dryland treatments was due to changes in the water potential (Ψm) and pH. In contrast, the temporal changes in the composition of the rhizosphere microbiome correlated with temperature and precipitation. In summary, our long-term study provides insights into how the availability of water in a semi-arid agroecosystem shapes the belowground wheat microbiome.

16.
Res Microbiol ; 169(7-8): 450-454, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29409983

RESUMO

The proteobacterial antimicrobial compound efflux (PACE) family of transport proteins was only recently described. PACE family transport proteins can confer resistance to a range of biocides used as disinfectants and antiseptics, and are encoded by many important Gram-negative human pathogens. However, we are only just beginning to appreciate the range of functions and the mechanism(s) of transport operating in these proteins. Genes encoding PACE family proteins are typically conserved in the core genomes of bacterial species rather than on recently acquired mobile genetic elements, suggesting that they confer important core functions in addition to biocide resistance. Three-dimensional structural information is not yet available for PACE family proteins. However, PACE proteins have several very highly conserved amino acid sequence motifs that are likely to be important for substrate transport. PACE proteins also display strong amino acid sequence conservation between their N and C-terminal halves, suggesting that they evolved by duplication of an ancestral protein comprised of two transmembrane helices. In light of their drug resistance functions in Gram-negative pathogens, PACE proteins should be the subject of detailed future investigation.


Assuntos
Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Família Multigênica , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transporte Biológico , Desinfetantes/metabolismo , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteobactérias/química , Proteobactérias/genética , Proteobactérias/metabolismo
17.
Environ Microbiol ; 19(8): 3323-3341, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28631400

RESUMO

Located in the Northern Territory of Australia, Ranger uranium mine is directly adjacent to the UNESCO World Heritage listed Kakadu National Park, with rehabilitation targets needed to ensure the site can be incorporated into the park following the mine's closure in 2026. This study aimed to understand the impact of uranium concentration on microbial communities, in order to identify and describe potential breakpoints in microbial ecosystem services. This is the first study to report in situ deployment of uranium-spiked sediments along a concentration gradient (0-4000 mg U kg-1 ), with the study design maximising the advantages of both field surveys and laboratory manipulative studies. Changes to microbial communities were characterised through the use of amplicon and shotgun metagenomic next-generation sequencing. Significant changes to taxonomic and functional community assembly occurred at a concentration of 1500 mg U kg-1 sediment and above. At uranium concentrations of ≥ 1500 mg U kg-1 , genes associated with methanogenic consortia and processes increased in relative abundance, while numerous significant changes were also seen in the relative abundances of genes involved in nitrogen cycling. Such alterations in carbon and nitrogen cycling pathways suggest that taxonomic and functional changes to microbial communities may result in changes in ecosystem processes and resilience.


Assuntos
Bactérias/genética , Ciclo do Carbono/genética , Sedimentos Geológicos/química , Consórcios Microbianos/efeitos dos fármacos , Ciclo do Nitrogênio/genética , Transportadores de Cassetes de Ligação de ATP/genética , Austrália , Bactérias/classificação , Bactérias/metabolismo , Sequência de Bases , Carbono/metabolismo , Ecossistema , Sedimentos Geológicos/microbiologia , Metagenômica , Metano/metabolismo , Mineração , Nitrogênio/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Urânio/metabolismo , Urânio/farmacologia
18.
PLoS One ; 12(5): e0176188, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28472044

RESUMO

The Bacillus cereus group of bacteria includes seven closely related species, three of which, B. anthracis, B. cereus and B. thuringiensis, are pathogens of humans, animals and/or insects. Preliminary investigations into the transport capabilities of different bacterial lineages suggested that genes encoding putative efflux systems were unusually abundant in the B. cereus group compared to other bacteria. To explore the drug efflux potential of the B. cereus group all putative efflux systems were identified in the genomes of prototypical strains of B. cereus, B. anthracis and B. thuringiensis using our Transporter Automated Annotation Pipeline. More than 90 putative drug efflux systems were found within each of these strains, accounting for up to 2.7% of their protein coding potential. Comparative analyses demonstrated that the efflux systems are highly conserved between these species; 70-80% of the putative efflux pumps were shared between all three strains studied. Furthermore, 82% of the putative efflux system proteins encoded by the prototypical B. cereus strain ATCC 14579 (type strain) were found to be conserved in at least 80% of 169 B. cereus group strains that have high quality genome sequences available. However, only a handful of these efflux pumps have been functionally characterized. Deletion of individual efflux pump genes from B. cereus typically had little impact to drug resistance phenotypes or the general fitness of the strains, possibly because of the large numbers of alternative efflux systems that may have overlapping substrate specificities. Therefore, to gain insight into the possible transport functions of efflux systems in B. cereus, we undertook large-scale qRT-PCR analyses of efflux pump gene expression following drug shocks and other stress treatments. Clustering of gene expression changes identified several groups of similarly regulated systems that may have overlapping drug resistance functions. In this article we review current knowledge of the small molecule efflux pumps encoded by the B. cereus group and suggest the likely functions of numerous uncharacterised pumps.


Assuntos
Bacillus cereus/metabolismo , Antibacterianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/genética , Transporte Biológico , Genes Bacterianos , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
BMC Microbiol ; 17(1): 59, 2017 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-28284195

RESUMO

BACKGROUND: The first row transition metal ions zinc and copper are essential to the survival of many organisms, although in excess these ions are associated with significant toxicity. Here, we examined the impact of zinc and copper stress on Acinetobacter baumannii, a common opportunistic pathogen. RESULTS: We show that extracellular zinc stress induces a copper-specific depletion phenotype in A. baumannii ATCC 17978. Supplementation with copper not only fails to rescue this phenotype, but further exacerbates the copper depletion. Extensive analysis of the A. baumannii ATCC 17978 genome identified 13 putative zinc/copper resistance efflux pumps. Transcriptional analyses show that four of these transporters are responsive to zinc stress, five to copper stress and seven to the combination of zinc and copper stress, thereby revealing a likely foundation for the zinc-induced copper starvation in A. baumannii. In addition, we show that zinc and copper play crucial roles in management of oxidative stress and the membrane composition of A. baumannii. Further, we reveal that zinc and copper play distinct roles in macrophage-mediated killing of this pathogen. CONCLUSIONS: Collectively, this study supports the targeting of metal ion homeostatic mechanisms as an effective antimicrobial strategy against multi-drug resistant bacterial pathogens.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Cobre/farmacologia , Estresse Fisiológico , Zinco/farmacologia , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/crescimento & desenvolvimento , Antibacterianos/farmacologia , Transporte Biológico Ativo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Espécies Reativas de Oxigênio/farmacologia , Células THP-1/efeitos dos fármacos
20.
Nucleic Acids Res ; 45(D1): D320-D324, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899676

RESUMO

All cellular life contains an extensive array of membrane transport proteins. The vast majority of these transporters have not been experimentally characterized. We have developed a bioinformatic pipeline to identify and annotate complete sets of transporters in any sequenced genome. This pipeline is now fully automated enabling it to better keep pace with the accelerating rate of genome sequencing. This manuscript describes TransportDB 2.0 (http://www.membranetransport.org/transportDB2/), a completely updated version of TransportDB, which provides access to the large volumes of data generated by our automated transporter annotation pipeline. The TransportDB 2.0 web portal has been rebuilt to utilize contemporary JavaScript libraries, providing a highly interactive interface to the annotation information, and incorporates analysis tools that enable users to query the database on a number of levels. For example, TransportDB 2.0 includes tools that allow users to select annotated genomes of interest from the thousands of species held in the database and compare their complete transporter complements.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Proteínas de Membrana Transportadoras , Genômica/métodos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Navegador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...